서브메뉴

본문

AWS 기반 AI 애플리케이션 개발 (AI 유니콘 기업으로 도약하기)
AWS 기반 AI 애플리케이션 개발 (AI 유니콘 기업으로 도약하기)
저자 : 수브하시니 트리푸라네니.찰스 송 지음|노설빈 외
출판사 : 에이콘출판
출판년 : 2021
정가 : 35000, ISBN : 9791161755199

책소개


전반적으로 유지보수가 쉬운 AI 애플리케이션을 개발, 배포, 운영하는 방법에 대해 설명하고, 다양한 AWS AI/ML 서비스를 활용해서 효과적으로 AI 애플리케이션을 개발하는 방법을 실습 중심으로 제시한다. AI 애플리케이션을 개발하는 방법은 크게 두 부분으로 나눠 설명한다. 여러 AWS AI 서비스가 제공하는 기능을 바로 이용해서 AI 애플리케이션을 개발하는 방법을 실습과 함께 설명한 뒤에 AWS 세이지메이커 및 여러 AWS 인프라 서비스로 직접 AI 기능을 훈련하고 구축해서 AI 애플리케이션에 적용하는 방법을 실습을 통해 제공한다.

목차


1부. 소개 및 최신 AI 애플리케이션의 구조

1장. AWS의 인공지능 서비스 소개
__기술 요건
__AI 소개
____AI 응용 분야
______자율 주행차
______의료 AI
______맞춤형 예측 키보드
____AI 솔루션 개발 시 AWS의 필요성
__AI 관련 AWS 서비스의 개요
____ AWS 서비스 사용 실습
______AWS 계정 생성하기
______AWS 관리 콘솔 살펴보기
______AWS 서비스 찾기
______AWS 리전 선택하기
______아마존 레코그니션 서비스 사용해 보기
______S3 이용하기
______신원 및 접근 권한 관리
__AWS CLI 사용하기
____파이썬 설치하기
______macOS에 파이썬 설치하기
______리눅스에 파이썬 설치하기
______마이크로소프트 윈도에 파이썬 설치하기
____AWS CLI 설치하기
____AWS CLI 설정하기
____AWS CLI로 레코그니션 서비스 호출하기
__AI 애플리케이션에 파이썬 사용하기
____파이썬 개발 환경 구축하기
______pipenv로 파이썬 가상 환경 구축하기
______첫 번째 파이썬 가상 환경 구축하기
__AWS SDK로 첫 번째 프로젝트 개발하기
__요약
__참고자료

2장. 최신 AI 애플리케이션의 구조
__기술 요건
__AI 애플리케이션의 성공 요인
__AI 애플리케이션의 아키텍처 설계 원칙
__최신 AI 애플리케이션의 아키텍처 이해
__맞춤형 AI 기능 개발
__AI 애플리케이션 아키텍처에 따른 실습 준비
____객체 탐지기 아키텍처
____객체 탐지기 컴포넌트 간의 상호작용
____기본 프로젝트 구조 생성하기
__AWS 챌리스를 이용해 로컬에서 AI 애플리케이션 개발하기
__웹 UI 기반의 데모 애플리케이션 개발
____챌리스로 AI 애플리케이션 후단부를 AWS에 배포하기
____AWS S3로 정적 웹 사이트 배포하기
__요약
__더 읽을거리

2부. AWS AI 서비스를 활용한 애플리케이션 구축

3장. 아마존 레코그니션 및 트랜스레이트를 활용한 텍스트 탐지와 번역
__좁은 세상 만들기
__사진 번역기의 아키텍처 이해
__사진 번역기 컴포넌트 간의 상호작용
__프로젝트 구조 구축하기
__서비스 구현
____인식 서비스 - 텍스트 탐지
____번역 서비스 - 텍스트 번역하기
____스토리지 서비스 - 파일 업로드
____단위 테스트에 대한 권장 사항
__RESTful 엔드포인트의 구현
____이미지 속 텍스트 번역 엔드포인트
____이미지 업로드 엔드포인트
__웹 사용자 인터페이스 구현
____index.html
____scripts.js
__사진 번역기의 AWS 배포
__프로젝트 개선 아이디어 논의
__요약
__더 읽을거리

4장. 아마존 트랜스크라이브 및 폴리를 활용한 음성-텍스트 변환과 텍스트-음성 변환
__기술 요건
__공상 과학 영화 속의 기술
__만능 통역기의 아키텍처 이해
____만능 통역기 컴포넌트 간의 상호작용
__프로젝트 구조 구축하기
__서비스 구현
____음성 표기 서비스 - 음성-텍스트 변환
____번역 서비스 - 문서 번역
____음성 서비스 - 텍스트-음성 변환
____스토리지 서비스 - 파일 업로드 및 검색
__RESTful 엔드포인트 구현
____녹음 번역 엔드포인트
____음성 합성 엔드포인트
____녹음 업로드 엔드포인트
__웹 사용자 인터페이스 구현
____index.html
____scripts.js
__만능 통역기의 AWS 배포
__프로젝트 개선 아이디어 논의
__요약
__참고자료

5장. 아마존 컴프리헨드를 활용한 텍스트 내 정보 추출
__기술 요건
__인공지능과 협업하기
__연락처 관리기 아키텍처 이해
__연락처 관리기 컴포넌트 간의 상호작용
__프로젝트 구조 구축하기
__서비스 구현
____인식 서비스 - 텍스트 탐지
____추출 서비스 - 연락처 정보 추출
____연락처 저장소 - 연락처 저장 및 조회
____스토리지 서비스 - 파일 업로드 및 조회
__RESTful 엔드포인트 구현
____정보 추출 엔드포인트
____연락처 저장 및 모든 연락처 조회 엔드포인트
____업로드 이미지 엔드포인트
__웹 사용자 인터페이스 구현
____Index.html
____scripts.js
__연락처 관리기의 AWS 배포
__프로젝트 개선 아이디어 논의
__요약
__더 읽을거리

6장. 아마존 렉스를 활용한 음성 챗봇 구축
__친화적인 사람 대 컴퓨터 인터페이스의 이해
__연락처 도우미 아키텍처
__아마존 렉스 개발 패러다임의 이해
__연락처 도우미 봇 설정
____LookupPhoneNumberByName 의도
____LookupPhoneNumberByName 에 대한 샘플 발언과 슬롯
____LookupPhoneNumberByName에 대한 확인 프롬프트와 응답
____AWS 람다를 사용한 LookupPhoneNumberByName의 이행
______LookupPhoneNumberByName에 대한 다이나모DB IAM 역할
______LookupPhoneNumberByName에 대한 이행 람다 함수
______아마존 렉스 도우미 함수
____LookupPhoneNumberByName 의도 이행
____LookupPhoneNumberByName에 대한 시험 대화
____MakePhoneCallByName 의도
____MakePhoneCallByName 에 대한 샘플 발언과 람다 초기화 및 검증
______MakePhoneCallByName에 대한 슬롯과 확인 프롬프트
______MakePhoneCallByName에 대한 이행과 응답
______MakePhoneCallByName에 대한 시험 대화
____연락처 도우미 봇 배포
__연락처 도우미를 애플리케이션에 통합
____인공지능 비서 서비스 구현
____연락처 도우미 RESTful 엔드포인트
__요약
__더 읽을거리

3부. 아마존 세이지메이커를 활용한 머신러닝 모형 훈련

7장. 아마존 세이지메이커로 작업하는 방법
__기술 요건
__스파크 EMR을 활용한 빅데이터 전처리
__아마존 세이지메이커에서 훈련 수행
____Object2Vec의 작동 원리
____Object2Vec 알고리즘의 훈련
__훈련한 Object2Vec의 배포 및 추론 수행
__초매개변수 최적화(HPO) 수행
__세이지메이커의 실험 관리 서비스
__세이지메이커로 엠엑스넷 및 글루온 기반의 자체 모형 가져 오기
__R 모형의 자체 컨테이너 가져오기
__요약
__더 읽을거리

8장. 머신러닝 추론 파이프라인 생성
__기술 요건
__세이지메이커의 추론 파이프라인 아키텍처 이해
__아마존 글루와 스파크ML로 기능을 생성하는 방법
____사전 요건 준비
____파이스파크로 데이터 전처리
____AWS 글루 작업 생성
__세이지메이커에서 NTM 훈련으로 주제 식별
____세이지메이커에서 온라인 및 일괄처리 추론의 비교
____추론 파이프라인으로 실시간 예측 생성
__추론 파이프라인으로 일괄처리 예측 생성
__요약
__더 읽을거리

9장. 텍스트 집합에서 주제의 발견
__기술 요건
__주제 모델링 기법들
__신경 주제 모형의 작동 방식 이해
__세이지메이커에서 NTM 훈련
__훈련한 NTM 모형의 배포 및 추론 수행
__요약
__더 읽을거리

10장. 아마존 세이지메이커를 활용한 이미지 분류
__기술 요건
__합성곱 신경망 및 잔차 신경망 살펴보기
__아마존 세이지메이커에서 전이학습으로 이미지 분류
____이미지 분류에 필요한 입력 데이터 생성
____이미지 분류에 사용할 초매개변수의 정의
__배치 변환으로 추론 수행
__요약
__더 읽을거리

11장. 심층학습 및 자기회귀를 활용한 매출 예측
__기술 요건
__전통적인 시계열 예측 기법의 이해
____ARIMA
____지수 평활
__DeepAR 모형이 작동하는 방식
____모형 아키텍처
____망 가중치의 최적화
__DeepAR 기반 매출 예측 모형의 이해
____데이터셋에 대한 간결한 설명
____예비 데이터 분석
____데이터 전처리
____DeepAR의 훈련
__매출 예측 및 평가
__요약
__더 읽을거리

4부. 머신러닝 모형 모니터링 및 관리 방법

12장. 모형 정확도 저하 및 피드백 루프
__기술 요건
__성능 저하가 발생한 모형의 모니터링
__새로 추가되는 훈련 데이터 관련 사용 케이스(광고 클릭 전환) 개발
__머신러닝 피드백 루프 생성
____데이터 탐색
____특징 생성
____아마존 세이지메이커 XGBoost 알고리즘으로 광고 클릭 데이터 분류
____모형 성능 평가
__요약
__더 읽을거리

13장. 다음으로 무엇이 필요한가?
__1부에서 배운 개념 요약
__2부에서 배운 개념 요약
__3부에서 배운 개념 요약
__4부에서 배운 개념 요약
__다음으로 무엇이 필요한가?
____현실 세계에서 인공지능
______AWS 딥렌즈
______AWS 딥레이서
______사물 인터넷 및 AWS IoT 그린그래스
____자신의 분야에서 인공지능
__요약